Step 4. Bounds on the Riemann zeta function

We wish to bound $F(s)$. We start from (2), when

$$
|F(s)| \leq\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|+|\zeta(s)|,
$$

and give upper bounds on

$$
|\zeta(s)|, \quad\left|\zeta^{\prime}(s)\right| \text { and }\left|\frac{1}{\zeta(s)}\right| .
$$

We have shown that $\zeta(s)$ has no zeros in $\operatorname{Re} s \geq 1$. We will give upper and lower bounds on $\zeta(s)$ and its derivative in the slightly larger region of

$$
s=\sigma+i t \text { with }|t| \geq 2 \text { and } \sigma>1-\frac{a}{\log |t|},
$$

for any $a>0$ as long as $\sigma>1 / 2$.
Because $\zeta(\sigma-i t)=\overline{\zeta(\sigma+i t)}$ and thus

$$
|\zeta(\sigma-i t)|=|\overline{\zeta(\sigma+i t)}|=|\zeta(\sigma+i t)|,
$$

it suffices to give bounds for t positive. For simplicity write $\eta(t)=a / \log t$.

4.1. Approximate $\zeta(s)$ by a finite sum.

In the next important result we approximate the Riemann zeta function by a finite sum of its Dirichlet series. First recall Theorem 6.11;

$$
\begin{equation*}
\sum_{1 \leq n \leq N} \frac{1}{n^{s}}=1+\frac{1}{s-1}+\frac{N^{1-s}}{1-s}-s \int_{1}^{N}\{u\} \frac{d u}{u^{s+1}}, \tag{28}
\end{equation*}
$$

for $s \neq 1$. Let $N \rightarrow \infty$ to get (10) :

$$
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} d u .
$$

We can only take the limit for $\operatorname{Re} s>1$ for then $N^{1-s} /(1-s) \rightarrow 0$ as $N \rightarrow \infty$. But once the result has been proved we see that the right hand side is defined for Re $s>0, s \neq 1$, becoming the definition of the Riemann zeta function in that larger plane. If we now subtract these last two results we get

Theorem 6.24 For all $\operatorname{Re} s>0, s \neq 1$, and all integers $N \geq 1$,

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}+r_{N}(s) \tag{29}
\end{equation*}
$$

where the remainder is given by

$$
\begin{equation*}
r_{N}(s)=-s \int_{N}^{\infty} \frac{\{u\}}{u^{s+1}} d u \tag{30}
\end{equation*}
$$

and satisfies

$$
\left|r_{N}(s)\right| \leq|s| \int_{N}^{\infty} \frac{1}{u^{\sigma+1}} d u=\frac{|s|}{\sigma N^{\sigma}} .
$$

Note If you put $N=1$ in Theorem 6.24 you recover Theorem 6.12 (no surprises there) while, if you let $N \rightarrow \infty$, and assume $\operatorname{Re} s>1$ in which case

$$
\lim _{N \rightarrow \infty} \frac{N^{1-s}}{s-1}=0
$$

we recover the Dirichlet Series definition of the zeta function.
The purpose of Theorem 6.24 is to replace the infinite Dirichlet series by a finite series (called a Dirichlet Polynomial) and its strength is the ability to choose an appropriate length of polynomial N, normally depending on s.

4.2 Upper bound on $\zeta(s)$.

With $a>0$ fixed and $t>2$ we have defined $\eta(t)=a / \log t$. The important observation to make below is that for $t \geq 2$ we have

$$
t^{\eta(t)}=\exp (\eta(t) \log t)=\exp \left(\frac{a}{\log t} \log t\right)=e^{a},
$$

a constant independent of t.
Theorem 6.25 When $\sigma \geq 1-\eta(t), \sigma \geq 1 / 2$ and $t \geq 2$ we have

$$
\begin{equation*}
|\zeta(\sigma+i t)| \leq e^{a}(\log t+5) . \tag{31}
\end{equation*}
$$

Proof In Theorem 6.24 with $t \geq 2$ given choose $N=[t]$, and estimate each term in (29) separately. The choice of $N=[t]$ with $t \geq 2$ implies $N \geq 2$ and $N \leq t<N+1$. Then

$$
\left|\sum_{n=1}^{N} \frac{1}{n^{s}}\right| \leq \sum_{n=1}^{N} \frac{1}{n^{\sigma}} \leq \sum_{n=1}^{N} \frac{1}{n^{1-\eta(t)}} \leq N^{\eta(t)} \sum_{n=1}^{N} \frac{1}{n} \leq e^{a} \sum_{n=1}^{N} \frac{1}{n},
$$

since $\sigma \geq 1-\eta(t)$ and $N \leq t$. But, a result often seen in this course, is

$$
\sum_{n=1}^{N} \frac{1}{n}=1+\sum_{n=2}^{N} \frac{1}{n} \leq 1+\int_{1}^{N} \frac{d t}{t}=1+\log N
$$

Also

$$
\left|\frac{N^{1-s}}{s-1}\right|=\frac{N^{1-\sigma}}{|\sigma-1+i t|} \leq \frac{N^{\eta(t)}}{|t|} \leq \frac{e^{a}}{2}
$$

since $t \geq 2$. Finally

$$
\begin{aligned}
\left|r_{N}(s)\right| & \leq \frac{|\sigma+i t|}{\sigma N^{\sigma}} \leq \frac{1+t / \sigma}{N^{\sigma}} \leq \frac{1+2 t}{N^{1-\eta(t)}} \text { since } \sigma \geq 1 / 2 \\
& \leq e^{a} \frac{2 N+3}{N} \text { since } t \leq N+1 \\
& =e^{a}\left(2+\frac{3}{N}\right) \\
& \leq \frac{7}{2} e^{a}
\end{aligned}
$$

since $N \geq 2$. Combine to get the stated result.
Note this result, and other bounds on the Riemann zeta function require $t>2$ (and thus $t<-2$). See the appendix for $|t| \leq 2$.

4.3 Upper bound on $\zeta^{\prime}(s)$

Next we bound $\left|\zeta^{\prime}(s)\right|$ from above. You can start by differentiating (28) w.r.t s. Alternatively, if you dislike differentiating under an integral you can
repeat the method in Chapter 1 and apply Partial Summation in

$$
\begin{aligned}
\sum_{1 \leq n \leq N} \frac{\log n}{n^{s}} & =\frac{N \log N}{N^{s}}-\int_{1}^{N} u \frac{d}{d u}\left(\frac{\log u}{u^{s}}\right) d u+\int_{1}^{N}\{u\} \frac{d}{d u}\left(\frac{\log u}{u^{s}}\right) d u \\
& =\frac{N^{1-s} \log N}{1-s}-\frac{1}{(1-s)^{2}}\left(N^{1-s}-1\right)+\int_{1}^{N}\{u\} \frac{d}{d u}\left(\frac{\log u}{u^{s}}\right) d u
\end{aligned}
$$

after integrating by parts a number of times. Thus

$$
\begin{array}{r}
-\sum_{n=1}^{N} \frac{\log n}{n^{s}}=-\frac{1}{(s-1)^{2}}+\frac{-(1-s) N^{1-s} \log N+N^{1-s}}{(1-s)^{2}} \\
-\int_{1}^{N} \frac{\{u\}}{u^{1+s}} d u+s \int_{1}^{N} \frac{\{u\} \log u}{u^{1+s}} d u
\end{array}
$$

for integral $N \geq 1$ and $s \neq 1$. Assume $\operatorname{Re} s>1$ and let $N \rightarrow \infty$ to get.

$$
\zeta^{\prime}(s)=-\frac{1}{(s-1)^{2}}-\int_{1}^{\infty} \frac{\{u\}}{u^{s+1}} d u+s \int_{1}^{\infty} \frac{\{u\} \log u}{u^{s+1}} d u
$$

which is what we would have got on differentiating (28) directly. We can see that the integrals here converge for $\operatorname{Re} s>0$.
Subtracting these last two results gives an approximation to the derivative of the Riemann zeta function by a partial sum of its Dirichlet series,

Corollary 6.26

$$
\begin{equation*}
\zeta^{\prime}(s)=-\sum_{n=1}^{N} \frac{\log n}{n^{s}}-\frac{N^{1-s} \log N}{s-1}-\frac{N^{1-s}}{(s-1)^{2}}-I_{1}(s)+s I_{2}(s), \tag{32}
\end{equation*}
$$

where

$$
I_{1}(s)=\int_{N}^{\infty} \frac{\{u\}}{u^{s+1}} d u \quad \text { and } \quad I_{2}(s)=\int_{N}^{\infty} \frac{\{u\} \log u}{u^{s+1}} d u
$$

Leaving it to the student, each term can be estimated, giving
Theorem 6.27 For $\sigma \geq 1-\eta(t)$ and $t>2$ we have

$$
\begin{equation*}
\left|\zeta^{\prime}(\sigma+i t)\right| \leq e^{a}(\log t+7 / 4)^{2} . \tag{33}
\end{equation*}
$$

Proof Exercise.

4.4. Upper bounds for $\operatorname{Re} s \geq 1$.

Below we use these upper bounds first for $\operatorname{Re} s>1$. This is equivalent to choosing $a=0$ in the results above when we then get, for $t \geq 2$,

$$
\begin{equation*}
|\zeta(\sigma+i t)| \leq(\log t+5) \quad \text { and } \quad\left|\zeta^{\prime}(\sigma+i t)\right| \leq(\log t+7 / 4)^{2} \tag{34}
\end{equation*}
$$

4.5. Lower bound for $\zeta(s)$.

We give an upper bound for $\left|\zeta^{-1}(\sigma+i t)\right|$ or, equivalently, a lower bound for $|\zeta(\sigma+i t)|$. In fact we go further and bound it both away from 0 and to the left of the line $\operatorname{Re} s=1$. Earlier we proved that $\zeta(s)$ is non-zero in $\operatorname{Re} s \geq 1$ but now we will have a region free of zeros to the left of $\operatorname{Re} s=1$, i.e. a zero-free region.

Lemma 6.28 For $t \geq 2$ and $2 \geq \sigma \geq 1+\delta(t)$,

$$
\begin{equation*}
|\zeta(\sigma+i t)| \geq \frac{1}{2^{15}(\log t+6)^{7}}, \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(t)=\frac{1}{2^{19}(\log t+6)^{9}} \tag{36}
\end{equation*}
$$

Proof To get a lower bound in this region start from the important

$$
|\zeta(\sigma)|^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1
$$

valid for $\sigma>1$. We can apply (34) to the $\zeta(\sigma+2 i t)$ term, when

$$
|\zeta(\sigma+2 i t)| \leq \log 2 t+5=\log t+\log 2+5 \leq \log t+6
$$

say, where 6 is simply chosen as the smallest integer larger than $5+\log 2$.

For the $\zeta(\sigma)$ term we can recall from Chapter 1 that

$$
|\zeta(\sigma)|=1+\sum_{n=2}^{\infty} \frac{1}{n^{\sigma}} \leq 1+\int_{1}^{\infty} \frac{d y}{y^{\sigma}}=1+\frac{1}{\sigma-1}=\frac{\sigma}{\sigma-1} \leq \frac{2}{\sigma-1},
$$

since $\sigma<2$. Hence

$$
1 \leq|\zeta(\sigma)|^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \leq\left(\frac{2}{\sigma-1}\right)^{3}|\zeta(\sigma+i t)|^{4}(\log t+6)
$$

which rearranges as

$$
|\zeta(\sigma+i t)| \geq\left(\frac{\sigma-1}{2}\right)^{3 / 4} \frac{1}{(\log t+6)^{1 / 4}} \geq\left(\frac{\delta(t)}{2}\right)^{3 / 4} \frac{1}{(\log t+6)^{1 / 4}} .
$$

The result of the theorem now follows on substituting in $\delta(t)$.
The question you should ask, why this choice of $\delta(t)$? Answer, because of the next result. These two results can be combined as one, but since their proofs are so different I have separated them.

Theorem 6.29 For $t \geq 2$ and $1-\delta(t) \leq \sigma \leq 1+\delta(t)$,

$$
|\zeta(\sigma+i t)| \geq \frac{1}{2^{16}(\log t+6)^{7}}
$$

Note that this is half the size of the lower bound in Lemma 6.28.
Proof Write $\sigma_{t}=1+\delta(t)$. We are assuming

$$
1-\delta(t) \leq \sigma<\sigma_{t}=1+\delta(t)
$$

and so, for such σ, we have $0<\sigma_{t}-\sigma \leq 2 \delta(t)$.
Move along a horizontal line from $\sigma_{t}+i t$ to $\sigma+i t$. This time σ may be <1 but since $\delta(t) \leq 1 / \log t$ we can use the results of Theorem 6.27 with $a=1$, so $\left|\zeta^{\prime}(y+i t)\right| \leq e(\log t+7 / 4)^{2}$ for $y \geq 1-1 / \log t$.

Then

$$
\begin{align*}
\left|\zeta(\sigma+i t)-\zeta\left(\sigma_{t}+i t\right)\right| & =\left|\int_{\sigma_{t}}^{\sigma} \zeta^{\prime}(y+i t) d y\right| \leq e\left(\sigma_{t}-\sigma\right)(\log t+6)^{2} \\
& \leq 2 e \delta(t)(\log t+6)^{2} \tag{37}
\end{align*}
$$

by (33), using $\log t+7 / 4 \leq \log t+6$ simply so that the bounds in (35) and (37) are comparable.

But how does this upper bound on a difference, (37), give a lower bound on $\zeta(\sigma+i t)$?
Idea If $w, z \in \mathbb{C}$ and $|z-w|$ is "small" then z and w are 'about' the same size. Mathematically, assume $|z-w| \leq|w| / 2$. Recall the triangle inequality in the form $|a-b| \geq|a|-|b|$ for $a, b \in \mathbb{C}$ (proof $|a|=|a-b+b| \leq|a-b|+|b|$ by the 'usual' form of the triangle inequality. Rearrange to get result.) Using this

$$
\begin{equation*}
|z|=|w-(w-z)| \geq|w|-|w-z| \geq|w|-\frac{|w|}{2}=\frac{|w|}{2} \tag{38}
\end{equation*}
$$

i.e. we obtain a lower bound on $|z|$.

Apply this with $z=\zeta(\sigma+i t)$ and $w=\zeta\left(\sigma_{t}+i t\right)$. Then $|z-w| \leq|w| / 2$ is satisfied if the upper bound in (37) is less than half the lower bound in (35).
That is, if

$$
2 e \delta(t)(\log t+6)^{2} \leq \frac{1}{2}\left(\frac{\delta(t)}{2}\right)^{3 / 4} \frac{1}{(\log t+6)^{1 / 4}} .
$$

This rearranges to

$$
\delta(t) \leq \frac{1}{2^{11} e^{4}(\log t+6)^{9}}
$$

which is satisfied by our choice of $\delta(t)$ in (36).
From $|z-w| \leq|w| / 2$ it follows, by (38), that $|z| \geq|w| / 2$, i.e.

$$
\begin{equation*}
|\zeta(\sigma+i t)| \geq \frac{1}{2}\left|\zeta\left(\sigma_{t}+i t\right)\right| \geq \frac{1}{2^{16}(\log t+6)^{7}} \tag{39}
\end{equation*}
$$

by Lemma 6.28.

4.6. Upper bound on $F(s)$.

To combine the three bounds on ζ, ζ^{\prime} and $1 / \zeta$ they need to be comparable. For this, note that for $\sigma>1-1 / \log t$,

$$
\begin{aligned}
|\zeta(\sigma+i t)| & \leq e(\log t+5) \leq e(\log t+6) \\
\left|\zeta^{\prime}(\sigma+i t)\right| & \leq e\left(\log t+\frac{7}{4}\right)^{2} \leq e(\log t+6)^{2}
\end{aligned}
$$

are now comparable with the lower bound in Theorem 6.29. Though stated for $t>2$ they are valid for $|t|>2$ as long as t is replaced by $|t|$ in the bounds. Hence

Corollary 6.30 For $2>\sigma \geq 1-\delta(t)$ and $|t|>2$

$$
F(\sigma+i t) \leq 2^{19}(\log |t|+6)^{9} .
$$

Proof Looking back at the definition of $F(s)$,

$$
\begin{aligned}
|F(\sigma+i t)| & \leq \frac{\left|\zeta^{\prime}(\sigma+i t)\right|}{|\zeta(\sigma+i t)|}+|\zeta(\sigma+i t)| \\
& \leq e(\log |t|+6)^{2} 2^{16}(\log |t|+6)^{7}+(\log |t|+6) \\
& \leq 2^{19}(\log |t|+6)^{9}
\end{aligned}
$$

We in fact only want a weak version of this. For $t>2$ we have $6<8.65 \ldots \times$ $\log t$ so $\log t+6 \leq 9.65 \ldots \times \log t$ and thus

$$
F(\sigma+i t) \ll \log ^{9}|t|
$$

for $t>2$.
Theorem 6.29 implies that $\zeta(\sigma+i t)$ has no zeros in the region

$$
\sigma>1-\frac{1}{2^{19}(\log t+6)^{9}},|t| \geq 2 .
$$

This is called a zero-free region. You should draw this region to see how, the larger you take t, the less you can go to the left of the $\sigma=1$ line. No
one has yet proved that there exists $\delta>0$ such that $\zeta(s)$ has no zeros with $s: \operatorname{Re} s>1-\delta$.

The Riemann Hypothesis states that $\zeta(s)$ has no zeros with $s: \operatorname{Re} s>1 / 2$. It can be shown that this is equivalent to the statement that all zeros ρ of $\zeta(s)$ which satisfy $0<\operatorname{Re} \rho<1$ in fact satisfy $\operatorname{Re} s=1 / 2$.

Zeros with small imaginary parts.

The above results are valid for $|t|>2$. What of $|t| \leq 2$?
On $\operatorname{Re} s=1$ we have $\zeta(s) \neq 0$ and thus there exists $\eta>0$ such that $|\zeta(s)|>\eta$ when $|t|<2$. Yet $\zeta(s)$ has a continuation to the half plane $\operatorname{Re} s>0, s \neq 1$ on which it is holomorphic, in particular, continuous. This means there exists $\kappa_{1}>0$ such that $|\zeta(s)|>\eta / 2$ when $|t|<2$ and $1 \geq \sigma>1-\kappa_{1}$. Similarly, it can be shown that $F(s) \ll 1$ when $|t|<2$ and $1 \geq \sigma>1-\kappa_{1}$, provided $\kappa_{1}<1 / 2$. (See Additional Notes.)
It is possible, and see Jameson, Proposition 5.3.1, to prove
Proposition 6.31 $\zeta(s)$ has no zeros in the rectangle

$$
\frac{3}{4} \leq \sigma \leq 1 \text { and }|t| \leq \frac{5}{2} .
$$

Proof Not given.

Divergence of $\zeta(1+i t)$ for $t \neq 0$.

In Chapter 1 it was shown that the series defining $\zeta(s)$ converges absolutely for Res >1. In the Problem sheet you are asked to show that the series diverges for $\operatorname{Re} s<1$. That leaves the question of what happens on the vertical line $\operatorname{Re} s=1$.

An interesting application of Theorem 6.24 is

Theorem 6.32

$$
\sum_{n=1}^{\infty} \frac{1}{n^{1+i t}}
$$

diverges for all $t \in \mathbb{R}$.

Proof The result if known if $t=0$. If $t<0$ we can look at the conjugate of the series and assume $t>0$ as we now do.
Rearrange Theorem 6.24 as

$$
\sum_{n=1}^{N} \frac{1}{n^{s}}=\zeta(s)-\frac{N^{s-1}}{s-1}-r_{N}(s)
$$

where $\left|r_{N}(s)\right| \leq|s| / \sigma N^{\sigma}$. With $s=1+i t$ and $t>0$, we have

$$
\sum_{n=1}^{N} \frac{1}{n^{1+i t}}=\zeta(1+i t)+\frac{1}{t} e^{i(\pi / 2-t \log N)}+r_{N}(1+i t)
$$

where $\left|r_{N}(1+i t)\right| \leq(1+|t|) / N$.
As $N \rightarrow \infty$ then $r_{N}(1+i t) \rightarrow 0$ while the

$$
\zeta(1+i t)+\frac{1}{t} e^{i(\pi / 2-t \log N)}
$$

are values on the circle, centre $\zeta(1+i t)$, of radius $1 / t$. This sequence of points do not converge but instead go forever round the circle. Hence the sequence of partial sums $\sum_{n=1}^{N} n^{-1-i t}$ has no limit point as $N \rightarrow \infty$, i.e. the sequence does not converge. This is the definition of the series $\sum_{n=1}^{\infty} n^{-1-i t}$ diverging.

