Step 4. Bounds on the Riemann zeta function

We wish to bound F(s). We start from (2), when

$$|F(s)| \le \left|\frac{\zeta'(s)}{\zeta(s)}\right| + |\zeta(s)|,$$

and give upper bounds on

$$|\zeta(s)|, |\zeta'(s)|$$
 and $\left|\frac{1}{\zeta(s)}\right|.$

We have shown that $\zeta(s)$ has no zeros in Re $s \ge 1$. We will give upper and lower bounds on $\zeta(s)$ and its derivative in the slightly larger region of

$$s = \sigma + it$$
 with $|t| \ge 2$ and $\sigma > 1 - \frac{a}{\log |t|}$

for any a > 0 as long as $\sigma > 1/2$.

Because $\zeta(\sigma - it) = \overline{\zeta(\sigma + it)}$ and thus

$$|\zeta(\sigma - it)| = \left|\overline{\zeta(\sigma + it)}\right| = |\zeta(\sigma + it)|,$$

it suffices to give bounds for t positive. For simplicity write $\eta(t) = a/\log t$.

4.1. Approximate $\zeta(s)$ by a finite sum.

In the next important result we approximate the Riemann zeta function by a finite sum of its Dirichlet series. First recall Theorem 6.11;

$$\sum_{1 \le n \le N} \frac{1}{n^s} = 1 + \frac{1}{s-1} + \frac{N^{1-s}}{1-s} - s \int_1^N \{u\} \frac{du}{u^{s+1}},\tag{28}$$

for $s \neq 1$. Let $N \rightarrow \infty$ to get (10) :

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_1^\infty \frac{\{u\}}{u^{1+s}} du.$$

We can only take the limit for $\operatorname{Re} s > 1$ for then $N^{1-s}/(1-s) \to 0$ as $N \to \infty$. But once the result has been proved we see that the right hand side is defined for $\operatorname{Re} s > 0$, $s \neq 1$, becoming the *definition* of the Riemann zeta function in that larger plane. If we now subtract these last two results we get **Theorem 6.24** For all $\operatorname{Re} s > 0$, $s \neq 1$, and all integers $N \geq 1$,

$$\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} + r_N(s), \qquad (29)$$

where the remainder is given by

$$r_N(s) = -s \int_N^\infty \frac{\{u\}}{u^{s+1}} du \tag{30}$$

and satisfies

$$|r_N(s)| \le |s| \int_N^\infty \frac{1}{u^{\sigma+1}} du = \frac{|s|}{\sigma N^{\sigma}}.$$

Note If you put N = 1 in Theorem 6.24 you recover Theorem 6.12 (no surprises there) while, if you let $N \to \infty$, and assume Re s > 1 in which case

$$\lim_{N \to \infty} \frac{N^{1-s}}{s-1} = 0,$$

we recover the Dirichlet Series definition of the zeta function.

The purpose of Theorem 6.24 is to replace the infinite Dirichlet series by a finite series (called a Dirichlet Polynomial) and its strength is the ability to choose an appropriate length of polynomial N, normally *depending* on s.

4.2 Upper bound on $\zeta(s)$.

With a > 0 fixed and t > 2 we have defined $\eta(t) = a/\log t$. The important observation to make below is that for $t \ge 2$ we have

$$t^{\eta(t)} = \exp\left(\eta(t)\log t\right) = \exp\left(\frac{a}{\log t}\log t\right) = e^a,$$

a constant independent of t.

Theorem 6.25 When $\sigma \ge 1 - \eta(t)$, $\sigma \ge 1/2$ and $t \ge 2$ we have

$$|\zeta(\sigma+it)| \le e^a \left(\log t + 5\right). \tag{31}$$

Proof In Theorem 6.24 with $t \ge 2$ given choose N = [t], and estimate each term in (29) separately. The choice of N = [t] with $t \ge 2$ implies $N \ge 2$ and $N \le t < N + 1$. Then

$$\left|\sum_{n=1}^{N} \frac{1}{n^{s}}\right| \leq \sum_{n=1}^{N} \frac{1}{n^{\sigma}} \leq \sum_{n=1}^{N} \frac{1}{n^{1-\eta(t)}} \leq N^{\eta(t)} \sum_{n=1}^{N} \frac{1}{n} \leq e^{a} \sum_{n=1}^{N} \frac{1}{n},$$

since $\sigma \ge 1 - \eta(t)$ and $N \le t$. But, a result often seen in this course, is

$$\sum_{n=1}^{N} \frac{1}{n} = 1 + \sum_{n=2}^{N} \frac{1}{n} \le 1 + \int_{1}^{N} \frac{dt}{t} = 1 + \log N.$$

Also

$$\left|\frac{N^{1-s}}{s-1}\right| = \frac{N^{1-\sigma}}{|\sigma-1+it|} \le \frac{N^{\eta(t)}}{|t|} \le \frac{e^a}{2},$$

since $t \geq 2$. Finally

$$|r_N(s)| \leq \frac{|\sigma + it|}{\sigma N^{\sigma}} \leq \frac{1 + t/\sigma}{N^{\sigma}} \leq \frac{1 + 2t}{N^{1 - \eta(t)}} \text{ since } \sigma \geq 1/2$$
$$\leq e^a \frac{2N + 3}{N} \text{ since } t \leq N + 1$$
$$= e^a \left(2 + \frac{3}{N}\right)$$
$$\leq \frac{7}{2}e^a$$

since $N \geq 2$. Combine to get the stated result.

Note this result, and other bounds on the Riemann zeta function require t > 2 (and thus t < -2). See the appendix for $|t| \le 2$.

4.3 Upper bound on $\zeta'(s)$

Next we bound $|\zeta'(s)|$ from above. You can start by differentiating (28) w.r.t s. Alternatively, if you dislike differentiating under an integral you can

repeat the method in Chapter 1 and apply Partial Summation in

$$\sum_{1 \le n \le N} \frac{\log n}{n^s} = \frac{N \log N}{N^s} - \int_1^N u \frac{d}{du} \left(\frac{\log u}{u^s}\right) du + \int_1^N \{u\} \frac{d}{du} \left(\frac{\log u}{u^s}\right) du$$
$$= \frac{N^{1-s} \log N}{1-s} - \frac{1}{(1-s)^2} \left(N^{1-s} - 1\right) + \int_1^N \{u\} \frac{d}{du} \left(\frac{\log u}{u^s}\right) du,$$

after integrating by parts a number of times. Thus

$$-\sum_{n=1}^{N} \frac{\log n}{n^{s}} = -\frac{1}{(s-1)^{2}} + \frac{-(1-s)N^{1-s}\log N + N^{1-s}}{(1-s)^{2}} - \int_{1}^{N} \frac{\{u\}}{u^{1+s}} du + s \int_{1}^{N} \frac{\{u\}\log u}{u^{1+s}} du,$$

for integral $N \ge 1$ and $s \ne 1$. Assume $\operatorname{Re} s > 1$ and let $N \to \infty$ to get.

$$\zeta'(s) = -\frac{1}{\left(s-1\right)^2} - \int_1^\infty \frac{\{u\}}{u^{s+1}} du + s \int_1^\infty \frac{\{u\} \log u}{u^{s+1}} du,$$

which is what we would have got on differentiating (28) directly. We can see that the integrals here converge for Re s > 0.

Subtracting these last two results gives an approximation to the derivative of the Riemann zeta function by a partial sum of its Dirichlet series,

Corollary 6.26

$$\zeta'(s) = -\sum_{n=1}^{N} \frac{\log n}{n^s} - \frac{N^{1-s} \log N}{s-1} - \frac{N^{1-s}}{(s-1)^2} - I_1(s) + sI_2(s), \qquad (32)$$

where

$$I_{1}(s) = \int_{N}^{\infty} \frac{\{u\}}{u^{s+1}} du \quad and \quad I_{2}(s) = \int_{N}^{\infty} \frac{\{u\} \log u}{u^{s+1}} du.$$

Leaving it to the student, each term can be estimated, giving

Theorem 6.27 For $\sigma \ge 1 - \eta(t)$ and t > 2 we have

$$|\zeta'(\sigma + it)| \le e^a \left(\log t + 7/4\right)^2.$$
(33)

Proof Exercise.

4.4. Upper bounds for $\operatorname{Re} s \geq 1$.

Below we use these upper bounds first for Re s > 1. This is equivalent to choosing a = 0 in the results above when we then get, for $t \ge 2$,

$$|\zeta(\sigma+it)| \le (\log t + 5)$$
 and $|\zeta'(\sigma+it)| \le (\log t + 7/4)^2$. (34)

4.5. Lower bound for $\zeta(s)$.

We give an upper bound for $|\zeta^{-1}(\sigma+it)|$ or, equivalently, a lower bound for $|\zeta(\sigma+it)|$. In fact we go further and bound it **both** away from 0 **and** to the left of the line $\operatorname{Re} s = 1$. Earlier we proved that $\zeta(s)$ is non-zero in $\operatorname{Re} s \ge 1$ but now we will have a region free of zeros to the left of $\operatorname{Re} s = 1$, i.e. a zero-free region.

Lemma 6.28 For $t \ge 2$ and $2 \ge \sigma \ge 1 + \delta(t)$,

$$|\zeta(\sigma + it)| \ge \frac{1}{2^{15} \left(\log t + 6\right)^7},\tag{35}$$

where

$$\delta(t) = \frac{1}{2^{19} \left(\log t + 6\right)^9}.$$
(36)

Proof To get a lower bound in this region start from the important

$$|\zeta(\sigma)|^3 |\zeta(\sigma+it)|^4 |\zeta(\sigma+2it)| \ge 1,$$

valid for $\sigma > 1$. We can apply (34) to the $\zeta(\sigma + 2it)$ term, when

$$|\zeta(\sigma + 2it)| \le \log 2t + 5 = \log t + \log 2 + 5 \le \log t + 6$$

say, where 6 is simply chosen as the smallest integer larger than $5 + \log 2$.

For the $\zeta(\sigma)$ term we can recall from Chapter 1 that

$$|\zeta(\sigma)| = 1 + \sum_{n=2}^{\infty} \frac{1}{n^{\sigma}} \le 1 + \int_{1}^{\infty} \frac{dy}{y^{\sigma}} = 1 + \frac{1}{\sigma - 1} = \frac{\sigma}{\sigma - 1} \le \frac{2}{\sigma - 1},$$

since $\sigma < 2$. Hence

$$1 \le |\zeta(\sigma)|^3 \left| \zeta(\sigma + it) \right|^4 \left| \zeta(\sigma + 2it) \right| \le \left(\frac{2}{\sigma - 1}\right)^3 \left| \zeta(\sigma + it) \right|^4 \left(\log t + 6\right),$$

which rearranges as

of the n

$$|\zeta(\sigma+it)| \ge \left(\frac{\sigma-1}{2}\right)^{3/4} \frac{1}{\left(\log t + 6\right)^{1/4}} \ge \left(\frac{\delta(t)}{2}\right)^{3/4} \frac{1}{\left(\log t + 6\right)^{1/4}}$$

The result of the theorem now follows on substituting in $\delta(t)$.

The question you should ask, why this choice of
$$\delta(t)$$
? Answer, because of the next result. These two results can be combined as one, but since their

Theorem 6.29 For $t \ge 2$ and $1 - \delta(t) \le \sigma \le 1 + \delta(t)$,

$$|\zeta(\sigma + it)| \ge \frac{1}{2^{16} (\log t + 6)^7}$$

Note that this is half the size of the lower bound in Lemma 6.28.

Proof Write $\sigma_t = 1 + \delta(t)$. We are assuming

proofs are so different I have separated them.

$$1 - \delta(t) \le \sigma < \sigma_t = 1 + \delta(t) \,,$$

and so, for such σ , we have $0 < \sigma_t - \sigma \leq 2\delta(t)$.

Move along a horizontal line from $\sigma_t + it$ to $\sigma + it$. This time σ may be < 1but since $\delta(t) \leq 1/\log t$ we can use the results of Theorem 6.27 with a = 1, so $|\zeta'(y+it)| \leq e (\log t + 7/4)^2$ for $y \geq 1 - 1/\log t$.

Then

$$\begin{aligned} |\zeta(\sigma+it) - \zeta(\sigma_t + it)| &= \left| \int_{\sigma_t}^{\sigma} \zeta'(y+it) \, dy \right| \le e \left(\sigma_t - \sigma\right) \left(\log t + 6\right)^2. \\ &\le 2e\delta(t) \left(\log t + 6\right)^2, \end{aligned}$$
(37)

by (33), using $\log t + 7/4 \le \log t + 6$ simply so that the bounds in (35) and (37) are *comparable*.

But how does this *upper* bound on a difference, (37), give a *lower* bound on $\zeta(\sigma+it)$?

Idea If $w, z \in \mathbb{C}$ and |z - w| is "small" then z and w are 'about' the same size. Mathematically, assume $|z - w| \leq |w|/2$. Recall the triangle inequality in the form $|a - b| \geq |a| - |b|$ for $a, b \in \mathbb{C}$ (proof $|a| = |a - b + b| \leq |a - b| + |b|$ by the 'usual' form of the triangle inequality. Rearrange to get result.) Using this

$$|z| = |w - (w - z)| \ge |w| - |w - z| \ge |w| - \frac{|w|}{2} = \frac{|w|}{2},$$
(38)

i.e. we obtain a *lower* bound on |z|.

Apply this with $z = \zeta(\sigma + it)$ and $w = \zeta(\sigma_t + it)$. Then $|z - w| \le |w|/2$ is satisfied if the upper bound in (37) is less than half the lower bound in (35). That is, if

$$2e\delta(t)\left(\log t + 6\right)^2 \le \frac{1}{2}\left(\frac{\delta(t)}{2}\right)^{3/4} \frac{1}{\left(\log t + 6\right)^{1/4}}$$

This rearranges to

$$\delta(t) \le \frac{1}{2^{11} e^4 \left(\log t + 6\right)^9},$$

which is satisfied by our choice of $\delta(t)$ in (36).

From $|z - w| \le |w|/2$ it follows, by (38), that $|z| \ge |w|/2$, i.e.

$$|\zeta(\sigma + it)| \ge \frac{1}{2} |\zeta(\sigma_t + it)| \ge \frac{1}{2^{16} (\log t + 6)^7}$$
(39)

by Lemma 6.28.

4.6. Upper bound on F(s).

To combine the three bounds on ζ , ζ' and $1/\zeta$ they need to be comparable. For this, note that for $\sigma > 1 - 1/\log t$,

$$\begin{aligned} |\zeta(\sigma+it)| &\leq e\left(\log t+5\right) \leq e\left(\log t+6\right), \\ |\zeta'(\sigma+it)| &\leq e\left(\log t+\frac{7}{4}\right)^2 \leq e\left(\log t+6\right)^2, \end{aligned}$$

are now comparable with the lower bound in Theorem 6.29. Though stated for t > 2 they are valid for |t| > 2 as long as t is replaced by |t| in the bounds. Hence

Corollary 6.30 For $2 > \sigma \ge 1 - \delta(t)$ and |t| > 2

$$F(\sigma + it) \le 2^{19} \left(\log |t| + 6 \right)^9$$
.

Proof Looking back at the definition of F(s),

$$|F(\sigma+it)| \leq \frac{|\zeta'(\sigma+it)|}{|\zeta(\sigma+it)|} + |\zeta(\sigma+it)|$$

$$\leq e (\log|t|+6)^2 2^{16} (\log|t|+6)^7 + (\log|t|+6)$$

$$\leq 2^{19} (\log|t|+6)^9.$$

We in fact only want a weak version of this. For t > 2 we have $6 < 8.65... \times \log t$ so $\log t + 6 \leq 9.65... \times \log t$ and thus

$$F(\sigma \! + \! it) \ll \log^9 |t|$$

for t > 2.

Theorem 6.29 implies that $\zeta(\sigma+it)$ has no zeros in the region

$$\sigma > 1 - \frac{1}{2^{19} \left(\log t + 6 \right)^9}, |t| \ge 2.$$

This is called a *zero-free region*. You should draw this region to see how, the larger you take t, the less you can go to the left of the $\sigma = 1$ line. No

one has yet proved that there exists $\delta > 0$ such that $\zeta(s)$ has no zeros with $s : \operatorname{Re} s > 1 - \delta$.

The Riemann Hypothesis states that $\zeta(s)$ has no zeros with $s : \operatorname{Re} s > 1/2$. It can be shown that this is equivalent to the statement that all zeros ρ of $\zeta(s)$ which satisfy $0 < \operatorname{Re} \rho < 1$ in fact satisfy $\operatorname{Re} s = 1/2$.

Zeros with small imaginary parts.

The above results are valid for |t| > 2. What of $|t| \le 2$?

On Re s = 1 we have $\zeta(s) \neq 0$ and thus there exists $\eta > 0$ such that $|\zeta(s)| > \eta$ when |t| < 2. Yet $\zeta(s)$ has a continuation to the half plane Re s > 0, $s \neq 1$ on which it is holomorphic, in particular, continuous. This means there exists $\kappa_1 > 0$ such that $|\zeta(s)| > \eta/2$ when |t| < 2 and $1 \ge \sigma > 1 - \kappa_1$. Similarly, it can be shown that $F(s) \ll 1$ when |t| < 2 and $1 \ge \sigma > 1 - \kappa_1$, provided $\kappa_1 < 1/2$. (See Additional Notes.)

It is possible, and see Jameson, Proposition 5.3.1, to prove

Proposition 6.31 $\zeta(s)$ has no zeros in the rectangle

$$\frac{3}{4} \le \sigma \le 1 \ and \ |t| \le \frac{5}{2}.$$

Proof Not given.

Divergence of $\zeta(1+it)$ for $t \neq 0$.

In Chapter 1 it was shown that the series defining $\zeta(s)$ converges absolutely for Re s > 1. In the Problem sheet you are asked to show that the series diverges for Re s < 1. That leaves the question of what happens **on** the vertical line Re s = 1.

An interesting application of Theorem 6.24 is

Theorem 6.32

$$\sum_{n=1}^{\infty} \frac{1}{n^{1+it}}$$

diverges for all $t \in \mathbb{R}$.

Proof The result if known if t = 0. If t < 0 we can look at the conjugate of the series and assume t > 0 as we now do.

Rearrange Theorem 6.24 as

$$\sum_{n=1}^{N} \frac{1}{n^{s}} = \zeta(s) - \frac{N^{s-1}}{s-1} - r_{N}(s),$$

where $|r_N(s)| \leq |s| / \sigma N^{\sigma}$. With s = 1 + it and t > 0, we have

$$\sum_{n=1}^{N} \frac{1}{n^{1+it}} = \zeta(1+it) + \frac{1}{t} e^{i(\pi/2 - t \log N)} + r_N(1+it)$$

where $|r_N(1+it)| \le (1+|t|)/N$.

As $N \to \infty$ then $r_N(1+it) \to 0$ while the

$$\zeta(1+it) + \frac{1}{t}e^{i(\pi/2 - t\log N)}$$

are values on the circle, centre $\zeta(1+it)$, of radius 1/t. This sequence of points do not converge but instead go forever round the circle. Hence the sequence of partial sums $\sum_{n=1}^{N} n^{-1-it}$ has no limit point as $N \to \infty$, i.e. the sequence does not converge. This is the definition of the series $\sum_{n=1}^{\infty} n^{-1-it}$ diverging.